Что такое бутстреп (bootstrap) в контексте Data Science?
Это метод для оценки стандартных отклонений и нахождения доверительных интервалов статистических функционалов. Он основан на многократной выборке с возвращением из исходного набора данных. Так создаются «псевдовыборки».
Допустим, у нас есть выборка из неизвестного распределения: [7,2,4]. Мы хотим построить доверительный интервал для среднего.
▪️Начнём с того, что по имеющейся выборке построим много псевдовыборок. Для этого три раза подряд берём случайный элемент из выборки, допуская повторения. Повторяя эту процедуру много раз, мы получим много новых псевдовыборок такого же размера. ▪️У каждой из получившихся псевдовыборок посчитаем среднее. Так мы получим n чисел (по количеству псевдовыборок). Мы предполагаем, что каждое такое число что-то говорит нам об истинном математическом ожидании изначальной выборки. ▪️Мы упорядочиваем эти n чисел по возрастанию, и берём 0.95 интервал из середины. То есть выкидываем 2.5% самых маленьких чисел и 2.5% самых больших чисел. Из оставшихся чисел берём самое маленькое и самое большое — это будут границы нашего доверительного интервала для среднего.
Что такое бутстреп (bootstrap) в контексте Data Science?
Это метод для оценки стандартных отклонений и нахождения доверительных интервалов статистических функционалов. Он основан на многократной выборке с возвращением из исходного набора данных. Так создаются «псевдовыборки».
Допустим, у нас есть выборка из неизвестного распределения: [7,2,4]. Мы хотим построить доверительный интервал для среднего.
▪️Начнём с того, что по имеющейся выборке построим много псевдовыборок. Для этого три раза подряд берём случайный элемент из выборки, допуская повторения. Повторяя эту процедуру много раз, мы получим много новых псевдовыборок такого же размера. ▪️У каждой из получившихся псевдовыборок посчитаем среднее. Так мы получим n чисел (по количеству псевдовыборок). Мы предполагаем, что каждое такое число что-то говорит нам об истинном математическом ожидании изначальной выборки. ▪️Мы упорядочиваем эти n чисел по возрастанию, и берём 0.95 интервал из середины. То есть выкидываем 2.5% самых маленьких чисел и 2.5% самых больших чисел. Из оставшихся чисел берём самое маленькое и самое большое — это будут границы нашего доверительного интервала для среднего.
#анализ_данных #статистика
BY Библиотека собеса по Data Science | вопросы с собеседований
Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283
A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.
Look for Channels Online
You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.
Библиотека собеса по Data Science | вопросы с собеседований from tr